The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding
نویسندگان
چکیده
Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.
منابع مشابه
Evaluation of salinity tolerance in rice genotypes
Salinity is considered as one of important physical factors influencing rice (Oryza sativa L.) production. Knowledge of salinity effects on rice seedling growth and yieldcomponents would improve management practices in fields andincrease our understanding of salt tolerance mechanisms in rice. This study was designed to assess the role of Saltol QTL in regards to effects of salinity on plant gro...
متن کاملPollen Germination of Diverse Cotton Cultivars
High temperatures during cotton flowering and early boll development can detrimentally affect cotton yield. Current commercial cultivars do not have pronounced tolerance to elevated temperatures, and improved methods of screening for thermo-tolerance are needed. The effect of heat stress on cotton has been measured with several different methods including membrane leakage, chlorophyll fluoresce...
متن کاملPhysiology of High Temperature Stress Tolerance at Reproductive Stages in Maize
Maize is a dynamic cereal of world’s agriculture community and is grown both in spring and autumn seasons in Pakistan. In case of spring sowing (February sowing) both pistillate and staminate flowers face high temperature stress and ultimately results in poor seed setting because of increased silk dryness and pollen desiccation. Maize accessions were identified on the basis of their performance...
متن کاملPollen embryogenesis to induce, detect, and analyze mutants.
The development of fully differentiated plants from individual pollen grains through a series of developmental phases that resemble embryogenesis beginning with the zygote was demonstrated during the mid-1960's. This technology opened the door to the use of haploid plants (sporophytes with the gametic number of chromosomes) for plant breeding and genetic studies, biochemical and metabolic studi...
متن کاملMapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines
To study the genetic basis of heat tolerance at anthesis, a set of chromosome segment substitution lines (CSSLs) derived from Sasanishiki (japonica ssp. heat susceptible) and Habataki (indica spp. heat tolerant) were used for analysis across three high temperature environments. Spikelet fertility (SF), daily flowering time (DFT) and pollen shedding level (PSL) under high temperature (HT) were a...
متن کامل